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Proposed is an alternative method for permutational sampling in quantum gases using the path integral
formulation of statistical mechanics. It is shown that in principle we are able to use two operators which enable
us to construct a Markov chain through a graph of the irreducible representation of the symmetric group. As an
illustration of this method, a test calculation of four particles in a harmonic trap is performed.
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I. INTRODUCTION

Irrespective of their experimental realization, the theoret-
ical existence of condensed phases of noninteracting media
is indeed remarkable, and the mathematical structures with
which they are imbued can lead to a variety of interesting
observations. It is not difficult to show that a system of non-
interacting indistinguishable particles with bosonic symme-
try will undergo a second order phase transition if the spatial
dimension is greater than two. For d�2 it has been rigor-
ously shown that a bosonic system will not undergo phase
transition for T�0 �1,2�. Theoretically, however, it was
found that this is dependent on the form of the confining
potential �3� confirmed by evidence of Bose-Einstein con-
densates �BECs� having recently been observed in quasi-
two-dimensional traps �4�.

The experimental observation of BECs in systems with
both positive and negative s-wave scattering length �5–7�,
and the rapid expansion of novel trapping potentials in BECs
such as optical and magnetic lattices �8–10� and quasi-one-
and two-dimensional harmonic traps �4,11,12�, has given a
renewed impetus to the theoretical description of low tem-
perature atomic gases.

Of the theoretical approaches, path integral Monte Carlo
�PIMC� techniques stand as one of the most useful nonper-
turbative methods and is the only method able to produce
exact properties of systems at finite temperature, via sam-
pling of the thermal density matrix. One of the ubiquitous
problems in all approaches to evaluating the partition func-
tion for bosonic systems is a transparent way of sampling the
permutation space inherent in all problems involving indis-
tinguishable particles. Previous approaches such as those in
�13–15� advocate either the sampling of some cyclic subset
of Sn, the symmetric group of order n!, typically up to C4 or
C5, or approximate the interacting partition function structure
to that of a noninteracting system, which is only strictly valid
for systems which are weakly coupled.

In this paper we wish to make some remarks regarding the
permutational structure of the partition function for bosonic
particles. We present an algorithm which allows us to con-
struct a Markov chain through permutation space for an ex-
plicit probability measure which maps between conjugacy

classes of the symmetric group. It is partially inspired by the
recent work regarding Markov processes on Young tableaux
�16–19� and the connection between irreducible representa-
tions of the symmetric group and the analytic form of the
bosonic partition function for noninteracting systems. Unlike
a previous method �15�, which is restricted to weakly inter-
acting systems, we propose that this method samples the ring
configuration structure at any temperature without any a pri-
ori knowledge of the noninteracting counterpart. This en-
ables us to quantify ring configuration probabilities over a
larger temperature scale and evaluate the relative importance
of certain structures to the partition function.

The aims of this paper are �1� to give a rigorous formu-
lation of the role of permutation cycles in the canonical en-
semble partition function via a correspondence with irreduc-
ible representations of the symmetric group, and �2� to
propose a practical scheme for computational implementa-
tion within PIMC. As an illustration we perform calculations
on noninteracting bosons in a one-dimensional harmonic po-
tential, the results of which are presented in Sec. IV, a system
which has a very well understood theoretical basis.

This paper is organized as follows. In Sec. II we provide
the theoretical outline for the path integral formulation of
statistical mechanics in the canonical ensemble and derive a
form of the partition function based upon the conjugacy
classes of the symmetric group of n elements. In Sec. III we
outline the basis for effective evaluation of the discrete per-
mutational space by considering random growth of partitions
of the symmetric group using one loop operators. We are
able to stochastically sample the graph of partitions and
show that this theoretically will enable us to determine loop
configuration probabilities as a function of temperature.

II. PATH INTEGRAL STATISTICAL MECHANICS

The basis of the path integral formulation of statistical
mechanics is the decomposition property of the many body
density matrix ��R ,R� ;��, and the resulting classical con-
figuration integral for calculating the properties of quantum
systems �13,20�

��R,R�;�� =� dR1��R,R1;�/2���R1,R�;�/2� , �1�

where
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��R,R�;�� = �R�e−�H�R�� �2�

and �R�= �x1 ,x2 , . . . ,xN� denotes the coordinate representation
of the full N particle Hilbert space. The Hamiltonian operator
H in general contains q-number quantities representing par-
ticle kinetic and potential terms and Eq. �2� represents that of
an interacting many body quantum problem for distinguish-
able �Boltzmannian� particles. The partition function is given
as the trace of the density matrix

Z = Tr��� =� dR�R�e−�H�R� = Tr�e−�H� , �3�

the final line indicating that it is independent of the represen-
tation. The convolution property of the density matrix is ex-
act and gives us a representation of the density matrix at
temperature T as the convolution of two density matrices at
temperature 2T, effectively mapping low temperature prob-
lems to that of higher temperatures. Using the Trotter for-
mula, exp�−�H�=exp�−�H�M, where �=� /M, we may per-
form this operation an arbitrary number of times to obtain
the expression

Z = 	
i=0

M 
� dRi��Ri+1,Ri;�/M�� , �4�

with the trace condition requiring that RM+1=R0. In the limit
that M tends to infinity, �→0 and we obtain an expression
for the partition function which is functionally dependent on
the classical action. The path integral expression is

Z = �
R�0�

R���=R�0�

DRe−�S, �5�

where

� DR = lim
M→�

	
i=0

M 
� dRi� �6�

is the functional integration measure. The dynamical quantity
of interest, the Euclidean action, is now rendered a c-number
quantity on which the partition function is functionally de-
pendent.

For the discrete form of the partition function given in Eq.
�4�, the procedure of taking the trace of a convolution of M
density matrices is to represent particles as a set of M clas-
sically interacting beads interacting via a temperature depen-
dent harmonic force, forming a closed “necklace.” This is
sometimes referred to as the polymer isomorphism �13�. It
should be noted, however, that the interparticle potential only
acts between beads of corresponding timeslices �M� �13,20�.
As the number of time slices tends to infinity particles are
represented as continuous closed loops. For an extensive re-
view of path integrals in this context, the reader is referred to
�13�.

The formal evaluation of Eq. �5� for noninteracting par-
ticles gives the partition function to be the product of the
single particle partition function, i.e.,

ZN��� = Z1���N. �7�

When considering ensembles of indistinguishable par-
ticles one is required to permutate over particle labels. In the
discretized form of the partition function we need only con-
sider permutations over particles in the final time slice �13�,
i.e.,

�B�R,R�;�� =
1

N! 
��SN

��R,�R�;�� ,

ZB =
1

N! 
��SN

	
i=0

M−1 
� dRi��Ri+1,Ri;�/M��
	� dRM��R0,�RM,�/M� . �8�

For noninteracting systems of identical particles, the con-
volution property of the density matrix leads to a decompo-
sition and the partition function becomes the product of den-
sity matrices at various temperatures. Consider a system of
two particles with the Hamiltonian operator

H = H1 + H2 �9�

such that �H1 ,H2�=0. In this case the Boltzmannian two-
body density matrix will be ��x1x2 ,x1�x2� ;��
=��x1 ,x1� ;����x2 ,x2� ;��. The partition function for the
bosonic case will be

ZB��� =
1

2
� dx1dx2��x1,x1;����x2,x2;��

+
1

2
� dx1dx2��x1,x2;����x2,x1;�� . �10�

Using Eq. �1� for the second integral in Eq. �10�, the
partition function can be written exactly as

ZB��� =
1

2
†Z1���2 + Z1�2��‡ , �11�

Z1 denoting the single particle partition function. As is fre-
quently noted, the partition function of statistical mechanics
is related to the propagator of quantum theory via rotation of
time to the imaginary axis �21�, and so the effect of permut-
ing particle labels in the two particle case is to wind the
trajectory twice around imaginary time

A general expression can be obtained for the N-body non-
interacting partition function, involving the irreducible rep-
resentations of the symmetric group. Consider the symmetric
group, denoted by Sn, which is the group of all permutations
on n objects, with the order being �Sn � =n!. The number of
conjugacy classes of Sn is equal to the number-theoretic par-
tition function P�n� �22�, with the property

�
i=1

P�n�

�i = Sn. �12�

Here �i is the ith conjugacy class. The conjugacy classes
can be graphically represented via the standard Young tab-
leaux, however, for this case it is instructive to consider dia-
grams as shown in Fig. 1. This originates from the represen-
tation of particles in path integral statistical mechanics as
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kinetic strings. The action of elements of Sn on these strings
is to attach each string starting position ��=0� with all pos-
sible final positions and integrate, giving the partition func-
tion. It should be noted that this is exactly true for the inter-
acting as well as the noninteracting case.

Consider S4 which contains a total of five partitions and
24 elements, which is shown in Fig. 1. From this it can be
seen that elements of a particular conjugacy class are topo-
logically equivalent. We can identify Young tableaux and
partitions of n with the weakly decreasing sequence

�̄i = �
̄1
i ,
̄2

i , . . . ,
̄�
i � , �13�

each element having the property that 
̄1
i �
̄2

i � ¯ �
̄�
i , or

as the strongly decreasing sequence

�i = ��
1
i �ki,1,�
2

i �ki,2, . . . ,�
�
i �ki,�� , �14�

where 
̄1
i �
̄2

i � ¯ �
̄�
i . Here ki,j will be denoted as the

multiplicity of a particular loop size. The dimension of each
conjugacy class is equal to the number of Young tableaux
with shape �i which is given by

dim��i� =
n!

	
j=1

�

„�
 j
i�ki,jki,j!…

. �15�

For the purpose of this paper we need to identify two
numbers ��̄i � =�, the number of elements in a partition,
which is equal to the number of rows on the equivalent
Young tableaux and ��i � =�, the number of distinct elements.
For example, if we denote  as the set of all Young tableaux
with n boxes, for the case of S4 we have the conjugacy
classes represented by the partitions

 = ˆ�1,1,1,1�,�2,1,1�,�2,2�,�3,1�,�4�‰

= ˆ�14�,�2,12�,�22�,�3,1�,�4�‰

= ��1,�2,�3,�4,�5� , �16�

with the dimension of each conjugacy class given as

dim�� = � 24

14 . 4!
,

24

2.12 . 2!
,

24

22 . 2
,

24

3.1
,
24

4
� = �1,6,3,8,6� .

�17�

With this notation, we are able to write down a general
expression for the partition function of a noninteracting
bosonic system of n particles, which is

ZB��� =
1

N! 
i=1

P�n� �dim��i�	
j=1

��i�

Z1�
 j
i��ki,j� , �18�

where the superscript ki,j denotes raising the power of the
partition function to the multiplicity of this particular loop
with cycle size 
 j

i. To obtain an understanding of Eq. �18�, let
us again consider the example of S4 for which P�4�=5. Writ-
ten out fully, the partition function takes the form

24 	 ZB = 	
j=1

��1�

Z1�
 j
1��k1,j + 6	

j=1

��2�

Z1�
 j
2��k2,j + 3	

j=1

��3�

Z1�
 j
3��k3,j

+ 8	
j=1

��4�

Z1�
 j
4��k4,j + 6	

j=1

��5�

Z1�
 j
5��k5,j

= Z1���4 + 6Z1�2��Z1���2 + 3Z1�2��2

+ 8Z1�3��Z1��� + 6Z1�4�� . �19�

This is the exact form of the bosonic partition function for
four noninteracting particles in an arbitrary external poten-
tial. The probability of randomly choosing a particular parti-
tion �i� as a function of temperature is given by

���i � � =
1

ZB
dim��i�	

j=1

��i�

Z1�
i
j��ki,j . �20�

An analysis of this structure can show us the relative
weight of partition structures at various temperatures. A
graph of the contributions of the partitions of four particles
to the partition function for noninteracting particles in a one-
dimensional �1D� harmonic trap is shown in Fig. 2.

In this figure, the contributions from various elements of
the permutation group are clearly evident, showing that at
high temperatures the identity dominates, leading to the
usual classical statistics �13,20�. Also in the T→0 limit, the
partition function reduces to

ZB�� → �� =
1

N! 
i=1

P�n�

dim��i� , �21�

which is exact for all noninteracting bosonic systems. For
systems in which the particles interact, the evaluation of par-
tition function elements will generally not be decomposable
as a product of single particle functions �15�, but the loop
structure based upon the conjugacy classes of Sn will still be

1 2

34
S4

⇓

FIG. 1. Representation of the conjugacy classes of S4.
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present. However, the range of problems for which Eq. �8� is
exactly solvable for interacting systems is severely limited.

III. PIMC AND PERMUTATIONAL SAMPLING

The PIMC technique at present is the only method which
renders Eq. �8� amenable to numerical solution. However,
the method by which the permutational structure is ac-
counted for either is based upon including only a subset of
cyclic exchanges, usually up to C4 or C5, or the approxima-
tion of the exact permutational structure with that of a non-
interacting system. The first method works very well in pre-
dicting properties such as the superfluid transition
temperature of helium �13,23�, but is equivalent to the treat-
ment of parastatistics in bosonic systems first outlined by
Green �24,25�, and does not include the full permutational
structure of the system. The second method works only for
weakly interacting systems around the superfluid transition
point as implemented in �15� via knowledge of the noninter-
acting partition function counterpart and is unable to give
describe systems where the interactions are strong. The
strong interaction regime is important especially for the case
of repulsive interactions. It is specifically this regime in
which the PIMC method is superior as perturbation theory
becomes divergent.

In recent years mathematical methods have been devel-
oped regarding the random growth of partitions of the sym-
metric group, the probability measure known as the
Plancherel measure and random matrices �16,19,25�. One
would like to ask if this abstract mathematical method could
help in the very physical application of predicting the per-
mutational structure of BECs and superfluids at arbitrary

temperatures. If we denote  as the set of all Young tableaux
with n boxes, the probability of randomly choosing a particu-
lar partition �i� as a function of temperature is given by

���i � � =
1

ZB
dim��i�Z��i;�� �22�

with ZB equal to the total interacting bosonic partition func-
tion. This is presumably the probability used in �15� to con-
struct partitions, which was then applied to the case of a
weakly interacting bose gas, however, the way they did this
was not explicitly stated.

In the simplest implementation of a stochastic sampling
method, one would randomly select a partition and select this
with the probability given above. However, as derived by
Ramanajan and Hardy, for large n the number of partitions is
given by �26�

P�n� �
1

4�3n
e��2n/3. �23�

which becomes prohibitively inefficient for large n, as the
rejection rate for transitions between uncorrelated partitions
would be large.

We propose a set of operators which enable us to con-
struct a Markov chain through the conjugacy classes of SN. A
similar formalism can be found in Borodin and Olshanski
�17,18� in constructing partitions, identifying an operation
which maps between partitions. Again consider a partition as
the weakly decreasing sequence

�i = �
̄1
i ,
̄2

i , . . . ,
̄ j
i, . . . ,
̄�−1

i ,
̄�
i � �24�

but with the restriction that at least one element, namely 
̄�
i ,

has the value of 1. Consider two operators aj and āj, such
that

aj�
i = �
1

i , . . . ,�
 j
i + 1�, . . . ,
�−1

i � = �k,

āj�
i = �
1

i , . . . ,�
 j
i − 1�, . . . ,
�

i ,
�+1
i � = �m, �25�

such that

�aj�̄i� = ��̄i� − 1,

�āj�̄i� = ��̄i� + 1. �26�

These operators create and destroy C1 subgroups of the
conjugacy classes, in the process creating a new partition
which is also a conjugacy class of the relevant permutation
group. The action of these operators is to effectively move up
and down a graph with P�n� vertices of the partitions of SN,
leaving the sum of the elements of partitions invariant �cf.
Fig. 3�.

If we denote partitions which are related via a single ap-
plication of aj or āj as neighboring partitions, we can con-
struct a probability measure over neighboring partitions to
give a formula for the transition probability under aj and āj
as

0 2 4 6 8 10
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FIG. 2. �Color online� Loop structure of the four particle parti-
tion function in a 1D harmonic potential. The x axis is the tempera-
ture and the y axis the weight of the ith conjugacy class.
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p↓��i;aj�i� =
dim�aj�i�


j

dim�aj�i�
,

p↑��i; āj�i� =
dim�āj�i�


j

dim�āj�i�
. �27�

One can easily see that these transition probabilities sat-
isfy the criterion that the sum of probabilities over neighbors
is equal to one. In the construction of a Markov chain
through permutation space, one could suppose that these are
the correct transition probabilities to be used. Ergodicity, in
the sense that the correct weight of each partition will be
reproduced, is not assured via these relations. It is not, how-
ever, difficult to prove that all partitions are accessible under
this scheme. If we consider the partition denoting the identity
of SN as �1�N, then we may construct any other partition
using a repeated application of aj, that is

�
1,
2, . . . ,
�� = 	
i=1

�

ai

i�1�N. �28�

Since we are able to perform the reverse of this operation,
that is reach the identity from any partition, via the use of āj,
all partitions are connected. Once a partition is chosen then it
can be accepted or rejected via the Metropolis scheme �27�.
One hindrance to the successful application of these transi-
tion probabilities is that there does not exist any formula for
the sum over neighbors which would be relatively easy to
implement on a computer within a Monte Carlo code, espe-
cially for systems containing a large number of particles.

An alternative option which is relatively easy to imple-
ment would be to give all neighbors the same weight. Then
one may choose a particular element of a partition to act
upon with the probabilities

p↓��i;aj�i� =
kj

��̄i� − 1
, �29�

p↑��i; āj�i� =
kj

��i� − ki,�

. �30�

The action of āj on a partition element is to give ā�
�
→ �
−1,1� and as such the normalization is the number of
elements in a partition which are not equal to one. The action
of aj on a partition element is to give a�
 ,1�→ �
+1� such
that at least one element must have a value of one, and as
such the normalization is the number of elements in a parti-
tion less one.

It was essentially this use of aj exclusively by Boninsegni
in �14� to construct permutation cycles for the superfluid
phase of 4He, containing 64 atoms. However, in this work
permutation cycles were constructed at each sampling move
from the identity. Again, from Eq. �28� we can see that each
permutation cycle will be accessible via this scheme, how-
ever, it is not guaranteed that the correct weights will be
reproduced.

IV. COMPUTATION AND DISCUSSION OF RESULTS

As a test of the proposed scheme with the analytic results
given in Fig. 2, we performed a path integral Monte Carlo
calculation on four bosons in a 1D harmonic trap. We used
essentially the method as outlined in �13�, in the primitive
approximation �28�.

The Trotter number was chosen such that the single par-
ticle energy was comparable to the analytic expression �E�
= 1

2 coth� 1
2��, however, small enough that chosen permuta-

tions were accepted.
We implemented two schemes for permutation sampling.

In the first, the results of which are summarized in Fig. 4,
particle labels were randomly shuffled at each move and
were accepted or rejected according to the Metropolis
scheme. This was used primarily as a test for the validation
of the code. In the second scheme we constructed a random
walk through permutation space based upon the transition
probabilities given in Eqs. �29� and �30� between partitions.
At each move a partition list is created and an up or down
move �aj or āj� proposed with equal probability. In the case
that a partition is at the end of a path �cf. Fig. 3�, then the
algorithm forces a move to the next connected vertex. In the
case of aj, once a partition element is chosen, then the near-
est single loop structure is found such that the acceptance
probability in the following Metropolis sampling move is
maximized. The results of this method are shown in Fig. 5.

As can be seen, randomly shuffling particle labels repro-
duces the analytic decomposition of the partition function
very well. We would, however, expect this method to be-
come diminishingly inefficient as the particle number in-
creased, and as the confining potential becomes significantly
weaker, where the thermal wavelength of the particles will
no longer be comparable to the mean particle separation, and
thus would not be a viable option for a general PIMC code.
Further the results of our method show that even though
every partition is accessible via this algorithm, this does not
guarantee that the method will reproduce the analytical result
of Eq. �20�.

{22, 1}

{3,2}

{3, 12}

{4, 1}

{5}

{15}

{2, 13}

FIG. 3. Neighboring partitions of S5 under the action of a and
ā.
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An interesting feature of the results of the two methods of
permutational sampling investigated is that, while they did
not coincide with regard to the predicted permutation cycle
structure, the resultant energy of the two methods was nearly
identical �cf. Fig. 6�.

Although the method proposed was unable to reproduce
the exact analytic form of Eq. �20� for this relatively basic
model, we would expect that as the number of particles is
increased that this would become more accurate. As the
number of paths between vertices of the partition graph is
increased, a walk on this graph will not be required to pass
through a disproportionate number of low weight vertices.
Our results show that the weight of the larger cycle lengths is
underestimated, which is reflected by the fact that they lie on
the end points of the graph of S4. The larger cycle lengths
contribute to quantities such as the mean winding number
which derived from the mean squared winding number �23�.
This method does have the advantage over other methods in
that the only approximation is the form of the transition
probabilities. After a period of equilibration, where the cycle
structure is constructed from the identity, we will be able to
sample the local permutational structure by using aj and āj
without any a priori knowledge of cyclic structure of the
partition function.

As mentioned earlier, the number of conjugacy classes of
Sn has the asymptotic form

P�n� �
1

4�3n
e��2n/3, �31�

which would provide the associated computational sampling
frequency as a function of particle number. However, the
overhead required for the construction of partitions is mini-
mal, with only knowledge of the current permutational struc-
ture and the proposed structure required, and thus memory
requirements kept to a minimum. Further it is not necessary
that the entire graph of partitions be sampled as many con-
figurations will have only minor contributions, these depend-
ing on the temperature. After an initial period of equilibra-
tion, the process will sample the local neighborhood of the
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FIG. 4. �Color online� Partition structure of four bosons in a 1D
harmonic trap from PIMC calculations, with partitions created via a
random shuffling of particle labels. The solid line is the exact an-
swer as given by Eq. �20�.
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FIG. 5. �Color online�. Partition structure of four bosons in a 1D
harmonic trap with partitions created by the method. The solid line
is the exact answer as given by Eq. �20�.
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FIG. 6. �Color online� Energy as a function of temperature for
four-particles bosonic particles using two different methods for
sampling permutation space. The statistical errors in these calcula-
tions are beyond the resolution of this graph.
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highest weight permutations, those which will contribute the
greatest to observables. Although the intrinsic n! scaling in-
volved in the sampling of permutation space has largely been
overcome, it has been replaced by algorithms scaling expo-
nentially �13–15�, which is still problematic for large n. A
recent proposal for a size independent algorithm has been
reported by Boninsegni et al. in �29� which also looks prom-
ising for investigations into large systems and calculating
off-diagonal elements of the density matrix.

V. CONCLUSION

To summarize, we suggest the use of one loop operators
acting upon partitions for the construction of a Markov chain
through permutation space. We have derived a form of the
partition function for bosonic systems in the canonical en-
semble based upon the irreducible representations of the
symmetric group of n objects. It was shown that the partition
function can be decomposed into a sum over the conjugacy
classes of Sn which defines a probability measure over Young
tableaux which is a function of temperature.

There have been various proposals for a more transparent
method of sampling permutation space in the recent litera-
ture both for bosonic and fermionic systems �14,15,29–31�,
which appear to be successful in predicting properties of in-
teracting quantum systems. However, there still does not ex-
ist an unambiguous method for the sampling of permutation
space at the same level of rigor as for calculating expectation
values of continuous probability measures. One may expect
that a multilevel Metropolis scheme could be developed
whereby the partition structure at finite temperature is repro-
duced exactly, giving a more accurate sampling of the parti-

tion function. Any scheme that purports to full sampling of
the permutational structure of atomic gases within a path
integral Monte Carlo should be able to reproduce the analytic
form for the noninteracting case. A more rigorous formula-
tion for the construction of discrete probability measures
amenable to Monte Carlo methods may lead to some very
interesting new observations.

An interesting mathematical question also arises which
we wish not to explicitly address here, but may be a useful
connection between the theory of indistinguishable many-
body systems and a large body of work in probability theory
and the random growth of Young tableaux. Is one able to
construct a Markov chain via the use of aj and āj in the
canonical ensemble that in the infinite time limit will give
probabilities distributed according to Eq. �20�? Further, what
is the limit shape of Young tableaux in the N→� limit as a
function of temperature �16,19�? As T→� we expect this to
be x��x+ 1

2
�, where � is the Heaviside step function, as the

identity will become dominate in this limit. In the T→0
limit, where the partition function reduces to Eq. �21�, the
limit shape in the grand canonical ensemble has been estab-
lished and as such one would expect a continuous transfor-
mation between these limit shapes, the mapping being de-
pendant on temperature. This will be related to finding
eigenvalues of random matrices as a function of temperature.
We hope to investigate this further in a future paper.
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